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Abstract

The main objective of this thesis is to focus on numerical study of chemical reac-

tion and heat generation/absorption in a porous medium on boundary layer flow

of Carreau nanofluid over a nonlinearly stretching sheet. Meanwhile, the ordinary

differential equations are obtained by applying the similarity appropriate trans-

formation on the governing partial differential equations. The resulting system

of ordinary differential is solved numerically by using shooting method and ob-

tained the numerical results. This dissertation investigates the effects of physical

parameters like heat source (λ > 0), chemical reaction parameter (γ1), porosity

parameter (K1), the sink parameter (λ < 0) and Biot number (Bi) on the flow ve-

locity, nanofluid volume fraction and temperature. Effect of MHD, Joule heating

and Arrhenius activation energy are also discussed. The numerical values of skin

friction coefficient, Nusselt number and Sherwood number are also computed.
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Chapter 1

Introduction

A substance in the gas or liquid phase is named as the fluid. Flow of fluid has

all types of aspects, compressible and incompressible, steady and unsteady, vis-

cous and inviscid, uniform and non uniform, rotational and irrational, Meir [1].

The fluid flow analysis on a stretching surface is one of the essential problems of

the modern period as it exists in various engineering and technology processes.

Metal, extrusion, spining, wired drawing, manufacturing of rubber sheets, food

manufacturing and cooling of vast metallic plates like electrolyte are the common

examples. Sakialdis [2] was the first who initiated the problem of boundary layer

approximations over stretching surface. He analyzed the non Newtonian Maxwell

fluid with nano materials over exponentially stretched surface. The flow caused by

the stretching sheet was investigated by Crane [3]. He examined the behaviour of

boundary layer on the continuous surface. In recent time, numerious researchers

such as Shehzad et al. [4], Zheng et al. [5] and Gireesha et al. [6] have been involved

in investigating the phenomenon of the fluid flow through stretching surface. They

analyzed the impact of magnetic field parameter and predicted to reduce the ve-

locity of the fluid. The fluids play a vital role in heat transfer. The small solid

particle is termed as nanoparticle, the range of such nanoparticles is from 1-100

nanometer in size. The homogenous mixture of the base fluid and nanoparticles is

called nanofluid. In 1995, Choi [7] intiated the term of nanofluid in his pioneering

work. Due to its prospective engineering application, detailed work on this topic is

1



Introduction 2

carried out by various researchers. The nanotechnology has a vast range of appli-

cation in the fields of science and technology in modern developments. Recently,

the improvement in nanotechnology has increased exponentially. Malvandi and

Ganji [8] observed the impact of nanoparticles movement on the forced convection

in a channel for Alumina. They analyzed that the suction from the surface en-

hances the rate of heat transfer, while the blowing reduce the rate of heat transfer.

The critical observation of characterstics of nanofluids was carried out by Khanafer

and Vafai [9]. It was found that the effective viscosity of nanofluids increased with

an increment in the volume fraction and decreased with temperature increment.

Furthermore, copper water nanofluid in porous plates is investigated by Sureshku-

mar and Muthtamilselvan [10]. They observed that with the growth of solid volume

fraction in porous cavity, the average Nusselt number increases. Nagarajana and

Akbar [11] debated the heat transfer improvement of copper water nanofluid flow

in a porous square enclosure driven on moving plate. The analysis for the driven

cavity flow with various properties of heat exchange in nanofluid can be noticed in

[12, 13]. Ho et al. [14] explored the numerical solutions utilizing finite volume and

finite difference method for convective heat transfer in nanofluids. The numerical

simulation is achived for nanofluid, they studied the impact of thermal conduc-

tivity and viscosity in nanofluids. Recentlly, the nanofluid flow through various

shaped geometries has acquired the attention in different fields. Hsiao [15] carried

out the electrical magnetohydrodynamics Carreau and micropolar nanofluid flow

with impact of different parameters. Hydromagnetic flow problem with magnetic

and viscous dissipation effects of micropolar nanofluids over a stretching surface

as an applied thermal system for heat and mass transfer and energy management

was studied by [16]. An experiment was performed to investigate the issue of con-

vective boundary layer flow through a nonlinear stretched surface in the existence

of yield stress in a porous media [17, 18]. The analysis of peristaltic of a Carreau

fluid with chemical reaction has motivated the interest of several researchers due

to its broad uses in science and engineering like Biochemistry, diagnostic therapy,

neurology and treatment for cancer. The Carreau model lies in the category of non

Newtonian fluid models with low and high shear levels for which the constituent
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relationship accumulate. Because of this fact it has achieved extensive acceptance.

For the explanation of the non Newtonian fluids several experimental terms have

been proposed, based on their various characteristics obtained by Bird et al. [19].

Among these the rheological model of Carreau is a subordinate category of gen-

eralized Newtonian fluids [20]. Due to distinct application of Carreau model in

engineering and technology, various researchers have worked on properties of such

kinds of model. Hayat et al. [21] illustrated the flow properties of Careau fluid

along a stretching sheet. Additionally, different researchers have been investigat-

ing the Carreau fluid model for various flow problems and present analysis deals

with the study of Carreau fluid in two-dimensional MHD flow over a stretched

sheet component [22, 23]. Laterly, Martins et al. [24] investigated the numerical

analysis of shear thinning axisymmetric flow impacts of a Carreau fluid. Olaju-

won [25] numerically illustrated the heat and mass exchange in a hydro magnetic

Carreau fluid with radiation and thermal diffusion. Tshehla [26] analyzed the

free surface of the Carreau fluid flowing down in the inclined plane. Recentlly,

MHD flow of viscoelastic fluids with and without heat exchange over a stretching

sheet has been addressed by various researchers [27, 28]. Bhattacharyya et al. [29]

examined the convection flow of boundary layer force and transfer of heat past

a porous plate with velocity and temperature slip affect. Das [30] investigated

the effect of partial slip, chemical reaction, thermal radiation and temperature

dependent fluid characteristics with constant heat flux over a premeable plate and

non uniform heat source/sink. The impact of partial slip, heat generation thermal

buoyancy and heat transfer of nanofluid past a stretching sheet was examined by

Das [30]. Amineraza et al. [31] analysed the impact of partial slip on flow and

transfer of heat of nanofluid past a stretching sheet. Zheng et al. [5] examined the

impact of velocity slip on MHD flow and transfer of heat over a porous sheet. In

recent time, the influence of partial slip flow and heat transfer over a nanofluid

stretched sheet was analyzed by Sharma et al. [32]. The existing study focuses on

quantitative research in the presence of chemical reaction, inner heat generation

and heat absorption of Carreau nanofluid flow over nonlinearly stretching sheet

saturated with a porous medium. The govering equations contain thermal energy,
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momentum and nanoparticles concentration are eased with the help of suitable

similarity transformation. The govering PDEs are transformed to ODEs before

being numerically solved using Shooting method together with RK4 technique.

Tables and graphs are used to analyze the impacts of the porosity parameter, heat

source, Biot number, chemically reaction parameters and heat sink on the tem-

perature, velocity and concentration distribution aside from the transfer of mass

and heat rates.

1.1 Thesis Contribution

The main purpose of the research work is to explore the numerical investigation

of mass and heat transfer in MHD flow with Joule heating effects and Arrhenius

activation energy. The nonlinear system of PDEs is converted into an ODEs

system and solved by using shooting method. The impact of govering parameters

on the temperature, velocity and the concentration distribution are illustrated

graphically.

1.2 Thesis Outline

This thesis is further composed of the following chapters:

Chapter 2 demonstrates some important definitions, laws and concepts which

are useful in understanding upcoming work.

Chapter 3 provides the details of numerical analysis of research paper by Eid et

al. [33]. By using simiarity transformation we reduce the set of nonlinear PDEs

into set of nonlinear ODEs and then numerically solved. Results are discussed

through graphs and tables.

Chapter 4 extend the work of Eid et al. [33] by considering the additional impact

of MHD, activation energy and Joule heating.

Chapter 5 summarizes the overall analysis performed in this dissertation.



Chapter 2

Fundamental Concepts and

Governing Equations

Some definitions, basic laws and terminologies would be discussed in the current

chapter, which would be used in next chapters.

2.1 Basic Definitions

Definition 2.1.1. (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [34]

Definition 2.1.2. (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [35]

Definition 2.1.3. (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [35]

Definition 2.1.4. (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in

motion, that branch of science is called fluid dynamics.” [35]

5



Preliminaries 6

Definition 2.1.5. (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [35]

Definition 2.1.6. (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid.

Mathematically,

ν =
µ

ρ
.

It is denoted by symbol ν called ‘nu’.” [35]

Definition 2.1.7. (Ideal Fluid)

“A fluid which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.” [35]

Definition 2.1.8. (Real Fluid)

“A fluid which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [35]

Definition 2.1.9. (Newtonian Fluid)

“A real fluid in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [35]

Definition 2.1.10. (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a Non-Newtonian fluid.” [35]

Definition 2.1.11. (Hydrodynamics)

“The study of the motion of fluids that are practically incompressible such as
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liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.” [36]

Definition 2.1.12. (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action.” [37]

2.2 Classification of Fluids

Definition 2.2.1. (Laminar Flow)

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream line and all the stream-lines are straight and

parallel.” [35]

Definition 2.2.2. (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way. Due to the movement of fluid particles in a zig-zag way.” [35]

Definition 2.2.3. (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= b,

where b is constant.” [35]

Definition 2.2.4. (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = b,

where b is constant.” [35]
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Definition 2.2.5. (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow donot change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is the rate of flow.” [35]

Definition 2.2.6. (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is the rate of flow.” [35]

2.3 Heat Transfer Mechanism and Properties

Definition 2.3.1. (Radiation)

“Radiation is the energy transfer due to the release of photons or electromagnetic

waves from a surface volume. Radiation doesn’t require any medium to trans-

fer heat. The energy produced by radiation is transformed by electromagnetic

waves.” [34]

Definition 2.3.2. (Boundary Layer)

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero

for a stationary surface. Therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact.

It follows that the flow velocity varies with distance from the wall; from zero at
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the wall to its full value some distance away, so that significant velocity gradients

are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer.” [38]

2.4 Some Important Definitions of Heat Trans-

fer

Definition 2.4.1. (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [39]

Definition 2.4.2. (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [39]

Definition 2.4.3. (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newton’s law of cooling.” [39]

Definition 2.4.4. (Force Convection)

“Forced convection heat transfer is induced by forcing a liquid, or gas, over a hot

body or surface.” [40]

Definition 2.4.5. (Natural Convection)

“Natural convection is generated by the density difference induced by the temper-

ature differences within a fluid system and the small density variations present in

these types of flows.” [40]

Definition 2.4.6. (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parame-

ter known as the thermal conductivity which may be a function of a number of

variables.” [39]
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Definition 2.4.7. (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as:

α =
κ

ρCp
,

where α is the thermal diffusivity, κ is the thermal conductivity, ρ is the density

and Cp is the specific heat at constant pressure.” [39]

2.4.1 Dimensionless Quantities

Definition 2.4.8. (Nusselt Number Nux)

“It is the ratio of the convective to the conductive heat transfer at a boundary in

a fluid. Mathematically,

Nux =
hL

k
,

where h stands for convective heat transfer, L for the characteristics length and k

stands for the thermal conductivity.” [34]

Definition 2.4.9. (Sherwood Number Nux)

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Shx =
KL

D
,

here L is characteristics length, D is the mass diffusivity and K is the mass transfer

coefficient.”

Definition 2.4.10. (Skin Friction Coefficient Cfx)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cf =
2τ0
ρu2w

,

where τ0 denotes the wall shear stress and ρ is the density.” [34]
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Definition 2.4.11. (Prandtl Number Pr)

“It is the ratio between the momentum diffusivity (ν) and thermal diffusivity (α).

Mathematically, it can be defined as

Pr =
ν

α
=

µ/ρ

k/cp
=
µCp
k
,

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [34]

Definition 2.4.12. (Eckert Number Ec)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

cp∇T
, ” [34]

Definition 2.4.13. (Weissenberg Number We)

“The dimensionless Weissenberg number, formulated by German physicist Karl

Weissenberg, is defined as

We =
ρu2

τ
, (2.1)

where ρ is the fluid density, u denotes the flow velocity and τ stands for the

shear stress. This number expresses the characteristic material time (relaxation

time) and the shear velocity. It characterizes the velocity and time relations in

rheological processes in viscoelastic shear flow. Furthermore, it also expresses the

ratio of the dynamic viscoelastic force to the viscous force.” [41]

Definition 2.4.14. (Biot Number Bi)

“The Biot number is a dimensionless quantity used in heat transfer calculation.

It gives a simple index of the ratio of heat transfer resistance inside of and at the
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surface of a body. The Biot number is defines as:

Bi =
hhL

k
, (2.2)

where hh represents the heat transfer coefficient, L denotes the characteristic

length and k is the thermal conductivity.” [41]

Definition 2.4.15. (Thermophoresis Parameter Nt)

“In a temperature gradient, small particles are pushed towards the lower temper-

ature because of the asymmetry of molecular impacts. The resulting force which

drives the particles along a temperature gradient towards the lower temperature,

is called thermophoretic force and the mechanism thermophoresis.” [41]

2.5 Fundamental Equations and Conservation Laws

2.5.1 Law Conservation of Mass

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [39] (2.3)

2.5.2 Law of Conservation of Momentum

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newton’s Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [39] (2.4)
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2.5.3 Law of Conservation of Energy

“Energy can neither created nor destroyed, it can be transformed from one form

to another form but total amount of an isolated system remains constant. For

example energy is conserved over time. It is the fundamental law of physics which

is also known as the first law of thermodynamics.

The mathematical form of energy equation in two-dimensional for fluid can be

written as, (
u
∂T

∂x
+ v

∂T

∂y

)
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+

µ

ρCp
Φ∗ (2.5)

where Φ∗ is dissipation function.” [39]

2.6 Solution Methodology

“In this method, the differential equation is kept in its nonlinear form and the

missing slope is found systematically by Newton’s method. This method provides

quadratic convergence of the iteration and is far better than the usual cut and try

methods. Consider the second-order differential equation

y′′(x) = f(x, y, y′(x)) (2.6)

subject to the boundary conditions

y(0) = 0, y(L) = C (2.7)

By denoting y by y1 and y′1 by y2, Eq. (2.6) can be written in the form of following

system of first order equations.

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y1(L) = C.

 (2.8)
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Denote the missing initial condition by y2(0) = k, to have

y′1 = y2, y1(0) = 0,

y′2 = f(x, y1, y2), y2(0) = k

 . (2.9)

Now the problem is to find s such that the solution of the IVP (2.9) satisfies the

boundary condition y(L) = C. In other words, if the solutions of the initial value

problem (2.9) are denoted by y1(x, k) and y2(x, k), one should search for that value

of s which is an approximate root the equation.

y1(L, k)− C = φ(kn) = 0. (2.10)

To find an approximate root of the Eq. (2.10) by the Newton’s method, the

iteration formula is given by

kn+1 = kn −
φ(kn)

dφ(kn)/dk
, (2.11)

kn+1 = kn −
y1(L, kn)− C
dy1(L, kn))/dk

. (2.12)

To find the derivatives of y1 with respect of s, differentiate (2.9) with respect to

s. For simplification, use the following notations

dy1
dk

= y3,
dy2
dk

= y4 (2.13)

y′3 = y4, y3(0) = 0,

y′4 =
∂f

∂y1
y3 +

∂f

∂y2
y4, y4(0) = 1.

 (2.14)

Now, solving the IVP Eq. (2.14), the value of y3 at L can be computed. This value

is actually the derivative of y1 with respect to s computed at L. Using the value

of y3(L, k) in Eq. (2.12), the modified value of k can be achieved. This new value

of k is used to solve the Eq. (2.9) and the process is repeated until the value of k

is within a described degree of accuracy.” [42]



Chapter 3

Numerical Study for Carreau

Nanofluid with Chemically

Species over Convectively Heated

Nonlinear Stretching Surface

3.1 Introduction

The numerical analysis of Carreau nanofluid flow towards nonlinear stretching

surface with chemically reactive species has been performed in this chapter. Fur-

thermore by using shooting technique, the solution of ODEs is obtained. At the

end of this chapter the numerical outcomes against various parameters have been

discussed. The detailed review study of Eid et al. [33] is explained in this unit.

3.2 Mathematical Modeling

We consider a 2D steady flow and heat exchange of Carreau nanofluid flow in

porous medium y > 0 moving over a nonlinear stretching surface under the impact

of chemical reaction. The sheet is stretching along x-axis with speed uw = bx

where as m is stretching parameter and b is a stretching constant, the surface

sheet temperature is Tw, convective fluid temperature Tf , hf gives heat transfer

15
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coefficient. At nonlinear stretching sheet surface, the nanoparticles fraction C and

temperature T are represented by Cw and Tw. At y → ∞ the ambient values C

and T are symbolized by C∞ and T∞.

Figure 3.1: Flow configration and coordinate system

3.3 The Governing Equations

The flow is explained by considering the 2D governing equations containing the

continuity, momentum, energy and concentration are as follow:

• Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0. (3.1)
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• Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2

[
1 + Γ2

(
∂u

∂y

)2
]n−1

2

−
(v
k

)
u

+ v(n− 1)Γ2∂
2u

∂y2

(
∂u

∂y

)2
[

1 + Γ2

(
∂u

∂y

)2
]n−3

2

. (3.2)

• Temperature Equation:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y
)

)2
]

+
Q0

(ρcp)f
(T − T∞) .

(3.3)

• Concentration Equation:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−R1(C − C∞). (3.4)

Boundary Conditions

u = uw(x) = bxm, v = 0, k
∂T

∂y
= −hf (Tw − T ), DB

∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.


The velocity component along x and y-axis are denoted by u and v, ν denotes

kinematic viscosity, the base fluid density is denoted by ρ, permeability of porous

medium is denoted by K, material constant is denoted by γ, power law index is

denoted by n, α= k
ρcp

denotes thermal diffusivity, the specific heat is denoted by

cp, thermal conductivity of fluid is denoted by k, dimensional heat generation co-

efficient is denoted by Q0, thermophoresis diffusion coefficient is denoted by DT ,

τ denotes the ratio of heat capacities.

Following similarity transformation has been introduced for transforming the math-

ematical model Eq. (3.1) to Eq. (3.4) into nondimensional form [33]
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ψ(x, y) =

√
2νb

m+ 1
x

m+1
2 f(η), η = y

√
b(m+ 1)

2ν
x

m−1
2 ,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

,

u =
∂ψ

∂y
, v = −∂ψ

∂x
.


(3.5)

The velocity components are composed as:

u =
∂ψ

∂y
= bxmf ′, v = −∂ψ

∂x
= −

√
ν(m+ 1)

2
)bx

m−1
2

[
f ′
(
m− 1

m+ 1

)
η + f

]
. (3.6)

We differentiate the above Eq. (3.6) w.r.t ‘x’ and ‘y’,

∂u

∂x
= b

[
mxm−1f ′(η) + xmf ′′(η)

∂η

∂x

]
,

∂u

∂x
= b

[
xmf ′′(η)

∂η

∂x
+mxm−1f ′(η)

]
,

∂u

∂x
= b

[
xmf ′′(η)

(
m− 1

2

)
ηx−1 +mxm−1f ′(η)

]
,

∂u

∂x
= bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
. (3.7)

Similarly, we have

∂v

∂y
= −

√
(m+ 1)νb

2
x

m−1
2

[
f ′(η)

∂η

∂y
+

(
m− 1

m+ 1

)
f ′′(η)η

∂η

∂y
η +

(
m− 1

m+ 1

)
f ′(η)

∂η

∂y

]
,

∂v

∂y
= −b(m+ 1)

2
xm−1

[
f ′(η) +

(
m− 1

m+ 1

)
f ′′(η)η +

(
m− 1

m+ 1

)
f ′(η)

]
.

∂v

∂y
= −bxm−1

(
m+ 1

2

)[
(m+ 1)f ′η + (m− 1)f ′′(η)η + (m− 1)f ′(η)

m+ 1

]
,

∂v

∂y
= −bxm−1mf ′(η)− b(m− 1)

2
xm−1ηf ′′(η),

∂v

∂y
= −bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
. (3.8)
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From Eq. (3.7) and Eq. (3.8), we satisfy the continuity equation,

bxm−1
[(

m− 1

2

)
f ′′(η)η +mf ′(η)

]
− bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
= 0.

(3.9)

Now we include the procedure for the conversion of Eq. (3.2) and Eq. (3.3) into

dimensionless form.

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2

[
1 + Γ2

(
∂u

∂y

)2
]n−1

2

−
(v
k

)
u

+ v(n− 1)Γ2∂
2u

∂y2

(
∂u

∂y

)2
[

1 + Γ2

(
∂u

∂y

)2
]n−3

2

(3.10)

In order to transform Eq. (3.2) and Eq. (3.3). We differentiate the above Eq. (3.6)

w.r.t ‘x’

∂u

∂x
= b

[
xmf ′′(η)

∂η

∂x
+mxm−1f ′(η)

]
,

∂u

∂x
= b

[
xmf ′′(η)

(
m− 1

2

)
ηx−1 +mxm−1f ′(η)

]
,

∂u

∂x
= bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
. (3.11)

Similarly differentiate Eq. (3.6) w.r.t ‘y’, we have

∂v

∂y
= −bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
,

∂u

∂y
= bxmf ′′(η)

∂η

∂y
,

∂u

∂y
= bxm

√
b(m+ 1)

2ν
x

m−1
2 f ′′(η), (3.12)

again differenting (3.13)

∂2u

∂y2
= bxm

√
b(m+ 1)

2ν
x

m−1
2 f ′′′(η)

∂η

∂y
,

∂2u

∂y2
= bxm

√
b(m+ 1)

2ν
x

m−1
2 f ′′′(η)

√
b(m+ 1)

2ν
x

m−1
2 ,
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∂2u

∂y2
= b2x2m−1

(
m+ 1

2ν

)
f ′′′(η),

∂2u

∂y2
= b2x2m−1

(
2m+ 1

2ν

)
f ′′′(η). (3.14)

Now,

u
ν

K
=

ν

K
bf ′xm,

u
ν

K
= b2x2m−1

(
νbxmf ′

Kb2x2m−1

)
,

u
ν

K
= b2x2m−1

(
νf ′

Kbxm−1

)
,

u
ν

K
= b2x2m−1(K1f

′).

K1 =
ν

K(bum−1w )1/m
. (3.15)

Using Eq. (3.11) to Eq. (3.15) in Eq. (3.10)

(
m+ 1

2

)[
1 + nWe2(f ′′)2

] [
1 +We2(f ′′)2

]n−3
2 f ′′′ −m(f ′)2 +

(
m+ 1

2

)
f ′′f

−K1f
′ = 0,

multiplying with
(

2
m+1

)
, we get

[
1 + nWe2(f ′′)2

] [
1 +We2(f ′′)2

]n−3
2 f ′′′ + f ′′f −

(
2

m+ 1

)[
m(f ′)2 +K1f

′] = 0,

f ′′′ = −
ff ′′ −

(
2

m+1

)
(mf ′2 +K1f

′)

[1 + nWe2(f ′′)2] [1 +We2(f ′′)]
n−3
2

. (3.16)

Now for Eq. (3.3), we proceed as follows (3.17)

θ(η) =
T − T∞
Tw − T∞

, (3.18)

φ(η) =
C − C∞
Cw − C∞

, (3.19)

C = C∞ + (Cw − C∞)φ, (3.20)

T = T∞ + (Tw − T∞)θ(η). (3.21)
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Differentiating Eq. (3.21) w.r.t ‘x’ and ‘y’ respectively,

∂T

∂x
= (Tw − T∞)θ′

∂η

∂x
,

∂T

∂x
= (Tw − T∞)θ′y

√
b(m+ 1)

2ν
x

m−1
2 x−1,

∂T

∂x
= (Tw − T∞)θ′

(
m− 1

2x

)
η. (3.22)

∂T

∂y
= (Tw − T∞)θ′

∂η

∂y
,

∂T

∂y
= θ′(η)(Tw − T∞)

√
b(m+ 1)

2ν
x

m−1
2 . (3.23)

∂2T

∂y2
= θ′′

√
b(m+ 1)

2ν
x

m−1
2

√
b(m+ 1)

2ν
x

m−1
2 (Tw − T∞). (3.24)

Similarly for equation Eq. (3.20), we have

∂C

∂x
= y

√
b(m+ 1)

2ν

(
m− 1

2

)
x

m−3
2 (Cw − C∞)φ′(η). (3.25)

∂C

∂y
= x

m−1
2 (Cw − C∞)

√
b(m+ 1)

2ν
φ′(η). (3.26)

∂2C

∂y2
= (Cw − C∞)φ′′(η)

(
b(m+ 1)

2ν

)
xm−1. (3.27)

From Eq. (3.3), we get

− b
(
m+ 1

2

)
(Tw − T∞)fθ′xm−1 = α(Tw − T∞)θ′′

b(m+ 1)

2ν

+ τ

[
DB((Cw − C∞))(Tw − T∞)θ′φ′b(

m+ 1

2ν
)xm−1 +

DT

T∞
(Tw − T∞)2

b

(
m+ 1

2ν

)
xm−1(θ′)2

]
+

Q0

(ρcp)f

(Tw − T∞)θ

xm−1
,
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dividing by 2
b(m+1)(Tw−T∞)(xm−1)

, we have

− fθ′ = α

ν
θ′′ +

τDB(Cw − C∞)

ν
θ′φ′ + τ

DT

T∞

(Tw − T∞)θ′
2

ν

+
Q0

(ρcp)f

2θ

(m+ 1)xm−1
,

θ′′

Pr
+ fθ′ +Nbφ

′θ′ +Ntθ
′2 +

Q0

(ρcp)f

2θ

(m+ 1)xm−1
= 0,

θ′′

Pr
+ fθ′ +Nbφ

′θ′ +Ntθ
′2 +

Q0

(ρcp)f (uw)m−1
2θ

(m+ 1)
= 0,

θ′′

Pr
+ fθ′ +Ntθ

′2 +
2θλ

(m+ 1)
+Nbφ

′θ′ = 0. (3.28)

Now using Eq. (3.20) to Eq. (3.27) in Eq. (3.4), we have

bxmf ′(η)y

√
b(m+ 1)

2ν

(
m− 1

2

)
x

m−3
2 (Cw − C∞)φ′(η)

+

[
−
√
b(m+ 1)νxm−1

2

(
m− 1

m+ 1

)
ηf ′ −

√
b(m+ 1)νxm−1

2
f

]
√
b(m+ 1)

2ν
x

m−1
2 (Cw − C∞)φ′(η) =

DB(Cw − C∞)

2ν

xm−1b(m+ 1)φ′′(η) +
DT (Tw − T∞)

T∞

b(m+ 1)

2ν
xm−1θ′′(η)−R1(Cw − C∞)φ(η),

y

√
b(m+ 1)

2ν
x

m−1
2

(
m− 1

2

)
xm−1f ′φ′ − η(Cw − C∞)f ′φ′

b(m+ 1)

2
xm−1

(
m− 1

m+ 1

)
− b(m+ 1)

2
xm−1(Cw − C∞)fφ′ =

b(m+ 1)

2
(Cw − C∞)xm−1

[
DB

ν
φ′′(η)

+
DT (Tw − T∞)

γT∞(Cw − C∞)
θ′′ −R1

2

b(m+ 1)xm−1
φ(η)

]
,

− b(m+ 1)

2
(Cw − C∞)xm−1fφ′ =

b(m+ 1)

2
(Cw − C∞)xm−1

[
DB

γ
φ′′(η)

+
DT

γT∞

Tw − T∞
Cw − C∞

θ′′ − 2R1

b(m+ 1)xm−1
φ(η)

]
,
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DB

γ
φ′′(η) +

(
Tw − T∞
Cw − C∞

)
DT

T∞

θ′′

γ
− 2

m+ 1

R1

bxm−1
φ+ fφ′ = 0,

1

LePr
φ′′ +

Nt

Nb

θ′′ − 2

m+ 1
γ1φ+ fφ′ = 0,

φ′′ +
Nt

Nb

θ′′ − 2

m+ 1
γ1φLePrfφ

′ = 0. (3.29)

where porosity parameter is K1, heat source is (λ > 0) or sink parameter (λ <

0), local Weissenberg number is We, Prandtl number is Pr, Brownian motion

parameter is Nb, thermophoresis parameter is Nt, Lewis number is Le, chemical

reaction paramer is γ1, Biot number is Bi, these parameter have the following

values:

K1 =
ν

K(bum−1w )
1
m

,We2 =
b3(m+ 1)Γ2

2ν
x3m−1, λ =

Q0

(ρcp)f ((bum−1w )
1
m )
,

P r =
ν

α
,Nb = τ

DB

ν
(Cw − C∞), Nt = τ

DT

T∞ν
(Tw − T∞),

Le =
α

DB

, γ1 =
νR1

DB((bum−1w )
1
m )
, Bi =

 hf

x
m−1

2 K
√

b(m+1)
2ν

 .


Now convert given boundary conditions into dimensionless boundary conditions:

• u = bxm at y = 0

u = bxmf ′(η),

⇒ bxm = bxmf ′(η),

⇒ f ′(0) = 1.

• v = 0,

v = −
√
b(m+ 1)

2
x

m−1
2

[
f ′
(
m− 1

m+ 1

)
η + f

]
,

⇒ f ′
(
m− 1

m+ 1

)
η = f(η),

⇒ f(0) = 0.
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• K
∂T

∂y
= −hf (Tw − T ),

θ′(η) =
−hf

K

√
bx(m−1)(m+1)

2ν

(Tw − T∞)(1 + θ(η))

Tw − T∞
,

θ′(0) = −Bi(1 + θ(η)). (3.30)

• DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0,

⇒ DB(Cw − C∞)φ′(η)

√
bxm−1(m+ 1)

2ν
+
DT

T∞
(Tw − T∞)θ′(η) = 0,

√
bxm−1(m+ 1)

2ν
= 0,

Nbφ
′(0) +Ntθ

′(0) = 0.

• u→ 0,

⇒ u = bxmf ′(η), bxm → 0,

f ′(η)→ 0, f ′(∞)→ 0, at y →∞.

• T → T∞, at y →∞

⇒ T = T∞ + (Tw − T∞)θ(η),

⇒ T∞ + (Tw − T∞)θ(η)→ T∞,

⇒ (Tw − T∞)θ(η)→ 0, (3.31)

θ(η)→ 0.

• C → C∞,

⇒ C = C∞ + (Cw − C∞)φ(η), y →∞,

⇒ C∞ + (Cw − C∞)φ(η)→ C∞,

⇒ (Cw − C∞)φ(∞)→ 0,

(Cw − C∞) 9 0, φ(∞)→ 0.
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3.4 Physical Quantities of Interest

Mathematically the shear stress coefficient, local Nusselt and Sherwood numbers

are written as

Cfx =
τw
ρu2w

, (3.32)

Nux =
xqm

k(Tw − T∞)
, (3.33)

Shx =
xqm

DB(Cw − C∞)
, (3.34)

where τw represent shear stress at rest, qm the heat and qw mass flux written as:

τw = µ0
∂u

∂y

[
1 + Γ2

(
∂u

∂y

)2 ]n−1
2
∣∣∣∣
y=0

, (3.35)

qw = −k
(
∂T

∂y

) ∣∣∣∣
y=0

, qm = −DB

(
∂C

∂y

) ∣∣∣∣
y=0

. (3.36)

Using Eq. (3.35) and Eq. (3.40) in Eq. (3.32) to Eq. (3.34), we get the dimensionless

form, as follows

Cfx =
τw
ρu2w

,

=

µ0bx
m

√
b(m+1)

2ν
x

m−1
2 f ′′(0)

[
1 + Γ2b2x3m−1( b(m+1)

2ν
)f ′′2(0)

]n−1
2

µ0
υ
b2x2m

,

=

√
ν
√

m+1
2
f ′′(0)[1 +We2f ′′2(0)]

n−1
2

b2−
3
2x

m+1
2

, ∴
µ

ρ
=ν

=

√
ν

bxm+1

√
m+ 1

2
f ′′(0)

[
1 +We2(f ′′(0))2

]n−1
2

,

Cfx

√
bxm+1

ν
=

√
m+ 1

2
f ′′(0)

[
1 +We2(f ′′(0))2

]n−1
2

,

R
1
2
e Cfx =

√
m+ 1

2
f ′′(0)

[
1 +We2(f ′′(0))2

]n−1
2

. (3.37)
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The Nusselt number can be written by:

Nux =
xqw

k(Tw − T∞)
,

Nux =
−kx(∂T

∂y
)

k T−T∞
θ(η)

, y = 0

Nux =
−(Tw − T∞)θ′(0)

√
bx

m+1
2 (m+1)
2ν

T−T∞
θ(0)

,

Nux =
−θ(0)

(
(T−T∞)
θ(0)

)
θ′(0)

√
b(m+1)

2ν
xm+1

(T − T∞)
,

Nux = −
√
m+ 1

2

√
xm+1b

ν
θ′(0),

R
− 1

2
e Nux = −

√
m+ 1

2
θ′(0). (3.38)

The Sherwood number is described as:

Shx =
xqm

(Cw − C∞)DB

,

=
−xDB

∂C
∂y

(Cw − C∞)DB

,

=
−x(Cw − C∞)

√
b(m+1)

2ν
xm−1φ′(η)

(Cw − C∞)
,

= −φ′(0)

√
m+ 1

2

√
bxm+1

ν
,

= −φ′(0)

√
m+ 1

2
R

1
2
e ,

R
− 1

2
e Shx = −φ′(0)

√
m+ 1

2
. (3.39)
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3.5 Solution Methodology

Consider the third order ODE with associated boundary conditions

f ′′′ = −
ff ′′ − (mf ′2 +K1f

′)
(

2
m+1

)
[1 + nWe2(f ′′)2] [1 +We2(f ′′)]

n−3
2

. (3.40)

f(0) = 0, f ′(0) = 1, f ′(∞)→ 0. (3.41)

We use shooting method for solving above equation with dimensionless boundary

conditions. First of all we covert higher order PDEs into the system of first order

ODEs. We used the RK4 method to solve IVP and assume the missing condition.

Following notations are used:

f = y1,

f ′ = y2,

f ′′ = y3.

The associated IVP takes the form:

y′1 = y2; y1(0) = 0, (3.42)

y′2 = y3; y2(0) = 1, (3.43)

y′3 = −
y1y3 −

(
2

m+1

)
(my22 +K1y2)

[1 + nWe2(y3)2] [1 +We2(y3)]
n−3
2

; y3(0) = ξ, (3.44)

Missing condition ξ is assumed to satisfy following relation;

y2(η∞, ξ) = 0,

where η∞ is positive real number.
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Now we use Newton’s method

ξ(k+1) = ξ(k) − Y (ξ)

Y ′(ξ)
, (3.45)

where Y (ξ) = y2(η∞, ξ).

In order to calculate the Eq. (3.44) Eq. (3.42) and Eq. (3.43) following notations

are used

∂y1
∂ξ

= y4,
∂y2
∂ξ

= y5,
∂y3
∂ξ

= y6.

y′4 = y5; y4(0) = 0,

y′5 = y6; y5(0) = 0,

y′6 =
1

(1 + nWe2y23)2(1 +We2y23)n−3
[−(y4y3 + y1y6) + (

2

m+ 1
)(2my2y5 +K1y5)

(1 + nWe2y23)(1 +We2y23)
n−3
2 − [(y1y3 +

2

m+ 1
(my22 +K1y2)](2mWe2y3y6)

(1 +We2y23)
n−3
2 + (

n− 3

2
)(1 + nWe2y23)

n−5
2 (2nWe2y3y6)]; y6(0) = 1.

The RK4 method is used to solve IVP for some suitable choice ξ. The missing

condition ξ is updated by Newton’s method and process will be continued until

the following criteria is met.

|y2(η∞, ξ)− 0| < ε.

where ε = 10−8 is set for numerical calculation.

Now for Eq. (3.28) and Eq. (3.29),

θ′′ = [−fθ′ −Nbφ
′θ′ −Ntθ

′2 − (
2

m+ 1
)λθ]Pr = 0. (3.46)

φ′′ = −PrLefφ′ − Nt

Nb

θ′′ +
2PrLeγ1φ

m+ 1
= 0. (3.47)



Carreau Nanofluid over Stretched Sheet 29

with boundary conditions:

θ′(0) = −Bi+Biθ(0), Nbφ
′(0) +Ntθ

′(0) = 0,

θ(∞)→ 0, φ(∞)→ 0. (3.48)

Following notations are used:

θ = z1, θ′ = z2.

φ = z3, φ′ = z4.

Rewritting equation:

z′1 = z2; z1(0) = p,

(3.49)

z′2 = Pr[−z2y1 −Nbz4z2 −Ntz
2
2 − (

2

m+ 1
)λz1]; z2(0) = −Bi(1− p),

(3.50)

z′3 = z4; z3(0) = q,

(3.51)

z′4 = PrLey1z4 −
Nt

Nb

Pr

[
− z2y1 −Nbz4z2 −Ntz

2
2 −

(
2

m+ 1

)
λz1

]
+

2PrLeγ1z3
m+ 1

;

z4(0) =
NtBi(1− p)

Nb

.

(3.52)

Missing conditions ‘p’ and ‘q’ are assumed to satisfy the following relation:

z1(η∞, p, q) = 0,

z3(η∞, p, q) = 0.

We have to solve the above equations by applying the Newton’s method,

 p(k+1)

q(k+1)

 =

 p(k)

q(k)

−
 ∂z1

∂p
∂z1
∂q

∂z3
∂p

∂z3
∂q

−1
(p=p(k),q=q(k))

 z1

z3

 . (3.53)
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We use following notations:

∂z1
∂p

= z5,
∂z2
∂p

= z6,
∂z3
∂p

= z7,
∂z4
∂p

= z8,

∂z1
∂q

= z9,
∂z2
∂q

= z10,
∂z3
∂q

= z11,
∂z4
∂q

= z12. (3.54)

Using above notations in Eq. (3.53), we have

 p(k+1)

q(k+1)

 =

 p(k)

q(k)

−
 z5 z9

z7 z11

−1
(p=p(k),q=q(k))

 z1

z3


Differentiating Eq. (3.49) to Eq. (3.52) and using above notations from (3.54), we

have

z′5 = z6; z5(0) = 1,

z′6 = Pr

[
−z6y1 −Nb(z6z4 + z8z2)− 2Ntz2z6 −

(
2

m+ 1

)
λz5

]
;

z6(0) = Bi,

z′7 = z8; z7(0) = 0,

z′8 = −PrLez8y1 −
Nt

Nb

Pr

[
−z6y1 −Nb(z6z4 + z8z2)− 2Ntz2z6 −

(
2

m+ 1

)
λz5

]
+

2

m+ 1
PrLeγ1z7; z8(0) = −NtBi

Nb

,

z′9 = z10; z9(0) = 0,

z′10 = Pr

[
−z10y1 −Nb(z4z10 + z2z12)− 2Ntz2N10 −

(
2

m+ 1

)
λz9

]
; z10(0) = 0,

z′11 = z12; z11(0) = 1,

z12′ = −PrLez12y1 −
NtPr

Nb

[−y1z10 −Nb(z4z10 + z2z12)− 2Ntz2z10,

−
(

2

m+ 1

)
λz9] +

[(
2

m+ 1

)
PrLeγ1z11

]
; z12(0) = 0.
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The RK4 method is used to solve the IVP and initial values are choosen arbitrar-

ily. During the execution of iterations these initial guesses shall be updated by

the Newton’s method and the process will be repeated untill the following stoping

criteria is met,

max(|z1(η∞, p, q)|, |z3(η∞, p, q)|) < ε,

where ε = 10−8 is set for numerical calculation.

3.6 Results and Discussions

The mathematical outcomes of the equations are discussed in this unit by using

tables and graphs. The impact of various parameters such as heat generation/ab-

sorption coeffcient K1, porosity parameter λ, chemical reaction effect γ1, skin

friction coefficient, Sherwood and Nusselt number, thermophoresis parameter Nt,

Prandtl number is observed graphically. These physical parameters have a direct

impact on f(η), θ(η) and φ(η). The heat and mass transfer rate for fixed values

of We, m, N , Pr, Le and Nb are analyzed numerically as shown in figures. In

ordered to evaluate the exactitude of current results and the validity of numerical

codes are analyzed in the absence of heat generation/absorption, chemical reaction

parameter and porosity parameter in Table 3.1. The results of heat transfer rate at

Re−
1
2Nux surface are matched by the published results of Hashim and Khan [33]

for different values of n, N , Pr and also m when We = 3, Nb = 0.5 and Bi→∞.

An excellent agreement is found, that provides us assurance in our numerical out-

come. Table 3.2 represents the different values of −f ′′(0), −θ(0) and −φ(0) for

various values of the govering parameters (Pr,Bi,K1, n, γ). It is observed that

n and K1 affects Skin friction significantly. The skin friction is decreased by the

increament in porosity parameter as well as power law index.

Figure 3.2 exhibits the effect of porosity parameter K1 on velocity profile for the

fixed parameters such as Pr = 2, Le = 1, m = 2, Nb = 0.5, λ = 0.1, Nt = 0.1,

γ1 = 0.1 and Bi = 1. The velocity profile for pseudoplastic n = 0.5 and dilatant
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nanofluids n = 1.5 increases by increasing the value of porosity parameter K1. Fig-

ures 3.3-3.6 illustrate the impact of porosity parameter K1 and Biot number on

the temperature distribution θ(η). It can be seen that the temperature profile re-

duces by enlarging the porosity parameter. Due to the fact that the suction of the

wall of the wedge imparts an other affects to the fluid flow process, which causes

the fluid to move at a retarding rate with reduced temperature. These behaviour

are shown in figures. Furthermore, the porosity of the boundary does no affect

of the fluid motion as we move away from the boundary surface. On conflicting

of Biot number and heat source parameter rise the temperature distribution. It

is demonstrated that by increasing the heat source and Biot number, the thick-

ness of thermal layer enhanced. Figures 3.4 and 3.5 represent the impact of heat

source/sink and the ratio of outer radius to inner radius on the temperature pro-

files. The impact of ratio of outer radius to inner radius is to rise the temperature

distribution, due to shrinking the thickness of thermal boundary layer. The heat

sink/source contribute more thermal energy into the boundary layer flow, gener-

ation of some more thermal energy improve the temperature distribution of the

flow. In Figure 3.6, the impact of Biot number on θ(η) is shown. The enhancement

of Biot number increases the temperature profile. Generally, Biot number can be

expressed as, the heat transfer by convection in a body surface to the heat transfer

by conduction on a body surface. The reason is that, the convective heat transfer

at the surface will rise the boundary layer thickness, therefore the nanofluid with

convective boundary condition is further effected as constrat to the static surface

temperature. Figures 3.7-3.11 clarify the infiuence of λ, Bi, K1, and γ1 on con-

centration distribution for n = 1.5 and n = 0.5, when the other parameters are

static. It is observed that from Figure 3.7 and Figure 3.11 the boundary layer

thickness of concentration profile shrink by the enhancement of K1 and γ1 while

increases by rising the value of λ and Bi. It is noticed that enlarging values of γ1,

reduces the thickness of concentration. Due to the fact that the γ1 in this system

results in chemical dissipation and therefore results decrease in concentration pro-

file. The most important effect is that the chemical reaction in the concentration

distribution and its associated boundary layer appears to decrease the overshoot.
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In Figures 3.8-3.10, it is observed that in the case of shear thinning nanofluids the

concentration boundary layer thickness is higher than the shear thinning nanoflu-

ids case. Figure 3.12 (a − b) illustrates the deviation of Nusselt number with K1

for different values of γ1, for the case of n = 1.5 and n = 0.5 while all other param-

eters are constant. It is detected that an enhancement in both γ1 and K1 causes

the increment in the local Nusselt number. Figure 3.13 (a − b) and Figure 3.14

(a− b) show the variation of local Nusselt number with K1 for different values of

λ and n, while other parameters are fixed. It is noted to see that the local Nusselt

number upswing with λ. Figure 3.16 (a− b) and Figure 3.17 (a− b) represent the

difference of Sherwood number with K1 for distinct values of λ in case of n = 0.5

and n = 1.5. It is noted that local Sherwood number decreases in both cases by

upturn in λ.

Table 3.1: Calculated values for −θ(0) for different value of Pr, Nt, Le when
We = 3, λ = γ = K1 = 0

Pr Nt Le m

-θ′(0)

Ref. [22] Present

n = 0.5 n = 1.5 n = 0.5 n = 1.5

1 0.1 1 2 0.6140 0.7354 0.6142 0.7054

3 1.2440 1.4198 1.2167 1.0900

5 1.6635 1.8615 1.2079 1.3849

2 0.3 0.9215 1.0758 0.7571 0.8347

0.5 0.8727 1.0243 0.8716 0.6855

0.7 0.8252 0.9738 0.8626 0.6493

0.1 0.5 0.9808 1.1379 0.8377 0.9032

1.5 0.9649 1.1209 0.8178 0.8712

2.5 0.9563 1.1114 0.7983 0.8521

1 1 0.8144 0.9314 0.8210 0.8919

2 0.9713 1.1295 0.9665 1.1565

0.5 1.3406 1.5785 1.1704 1.1855
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Table 3.2: Calculated values for Skin friction coefficient, mass transfer rate and heat transfer rate
for different values of various parameter given below

Ref. [33] Present

Bi Pr n γ1 λ K1 −f ′′(0) -θ′(0) −φ′(0) −f ′′(0) -θ′(0) −φ′(0)

0.1 0.01 0.5 0.1 -0.1 0.5 0.07176 -0.07176 1.08334 0.07160 -0.07160

0.2 0.11191 -0.11191 1.08334 0.11160 -0.11160

0.2 0.11139 -0.11138 1.08334 0.11210 -0.11210

0.1 1.0823 0.11395 -0.11396 1.08334 0.11560 -0.11560

10 0.18096 -0.18096 1.08334 0.18470 -0.18470

0.18078 -0.18078 1.08334 0.19030 -0.19030

50 0.19069 -0.19069 1.08334 0.19770 -0.19770

0.9 0.8850 0.19082 -0.19082 0.91993 0.19770 -0.19770

0.3 1 1.5 0.5 0.5 0.8626 0.18512 -0.18513 1.20239 0.21580 -0.21580

0.5 0.9 0.7470 0.18914 -0.18914 0.99939 0.21700 -0.21700
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Figure 3.2: Effect of velocity via porosity parameter.
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Figure 3.3: Effect of temperature via heat generation.
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Figure 3.4: Effect of temperature via heat source.
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Figure 3.5: Effect of temperature via sink parameter.
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Figure 3.6: Effect of temperature via Biot number.
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Figure 3.7: Effect of nanoparticles concentration via heat generation.
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Figure 3.8: Effect of nanoparticles concentration via heat source.
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Figure 3.9: Effect of nanoparticles concentration via sink parameter.
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Figure 3.10: Effect of nanoparticles concentration via Biot number.
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Figure 3.11: Effect of nanoparticles concentration via chemical reaction param-
eter.
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Figure 3.12: Effect of sink parameter on Nusslet number.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

=-0.1
=-0.2
=-0.3

Figure 3.13: Effect of sink parameter on Nusslet number.
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Figure 3.14: Effect of heat source on Sherwood number.
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Figure 3.15: Effect of heat source on Sherwood number.
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Chapter 4

MHD Flow of Nanofluid with

Joule Heating and Arrhenius

Activation Energy

4.1 Introduction

The flow model of Eid et al. [33] has been extended in this chapter by including

additional impact of MHD, Joule heating and Arrhenius activation energy. Ad-

ditionally, we converted the nonlinear PDEs of concentration, temperature and

momentum into set of ODEs by using the similarity transformation. We will use

the familiar shooting technique for the computation of the numerical solution of

these model ODEs. The effects of different parameters on the velocity, tempera-

ture and concentration will be discussed in detail in the result and discussion part.

4.2 Mathematical Modeling

The problem is formed in the following way. We consider a 2D steady incom-

pressible flow and transfer of heat by using stretching sheet. Sheet is displaced in

43
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such a way that flow is constrained as in the plane y > 0. The sheet has been

stretched with velocity uw(x) = bxm with free stream velocity, where b is constant

which is positive and m is stretching parameter, the sheet surface temperature

is Tw and convecting fluid temperature is Tf . For extremely large value of y the

nanoparticles temperature and concentration will be represented by C∞ and T∞

respectively.

4.3 The Governing Equations:

The flow is explained by considering the 2D governing equations containing the

continuity, momentum,energy and concentration are as follow:

• Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0. (4.1)

• Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2

[
1 + Γ2

(
∂u

∂y

)2
]n−1

2

+ v(n− 1)Γ2∂
2u

∂y2

(
∂u

∂y

)2
[

1 + Γ2

(
∂u

∂y

)2
]n−3

2

−
(v
k

)
u− σB2

0u

ρ
. (4.2)

• Temperature Equation:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y
)

)2
]

+
Q0

(ρcp)f
(T − T∞)

+
σB2

0u
2

ρcp
. (4.3)

• Concentration Equation:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−R1(C − C∞)

(
T

T∞

)m
exp

(
− E∗

K∗T

)
.

(4.4)
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The boundary conditions are:

u = uw(x) = bxm, v = 0, k
∂T

∂y
= −hf (TW − T ), DB

∂C

∂y
+

DT

T∞

∂T

∂y
= 0 at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.


We convert PDEs and these boundary conditions into the ODEs by adopting below

similarity transformation [33].

u =
∂ψ

∂y
= bxmf ′,

v = −∂ψ
∂x

=

√
ν(m+ 1)

2
)bx

m−1
2

[
f ′
(
m− 1

m+ 1

)]
η + f,

ψ(x, y) =

√
2νb

m+ 1
x

m+1
2 f(η), η = y

√
b(m+ 1)

2ν
x

m−1
2 ,

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

.


(4.5)

Complete procedure for confirmation of continuity Eq. (4.1) has been discussed

Chapter 3. Now we apply same process for conversation of Eq. (4.2) into dimen-

sionless form, differentiating ‘u’ w.r.t ‘x’, we have

∂u

∂x
= bxm−1

[(
m− 1

2

)
f ′′(η)η +mf ′(η)

]
. (4.6)

Similarly differentiating ‘u’ w.r.t ‘y’

∂u

∂y
= bxm

√
b(m+ 1)

2ν
x

m−1
2 f ′′(η), (4.7)

∂2u

∂y2
= b2x2m−1

(
2m+ 1

2ν

)
f ′′′(η). (4.8)

We write the L.H.S of Eq. (4.2) as,

u
∂u

∂x
+ v

∂u

∂y
= b2x2m−1

[
m(f ′2)−

(
m+ 1

2

)
f ′′f

]
. (4.9)
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Using all above Eqs. (4.6) to (4.9) in Eq. (4.2). Multiplying with
(

2
m+1

)
and

dividing with b2x2m−1 with Eq. (4.2), we get dimensionless form,

[
1 + nWe2(f ′′)2

] [
1 +We2(f ′′)2

]n−3
2 f ′′′ + f ′′f −

(
2

m+ 1

)[
m(f ′)2 +K1f

′]
− σ

ρ
B2

0bx
mf ′

(
2

m+ 1

)
1

b2x2m−1
= 0,

[
1 + nWe2(f ′′)2

] [
1 +We2(f ′′)2

]n−3
2 f ′′′ + f ′′f −

(
2

m+ 1

)[
m(f ′)2 +K1f

′]
−Mf ′ = 0, ∴M =

2σB2
0

ρ(m+ 1)bxm−1
. (4.10)

The same process is used to converts Eq. (4.3) into dimensionless form,

T = T∞ + (Tw − T∞)θ(η).

∂T

∂x
= (Tw − T∞)θ′

(
m− 1

2x

)
η, (4.11)

∂T

∂y
= (Tw − T∞)θ′

∂η

∂y
, (4.12)

∂2T

∂y2
= (Tw − T∞)θ′′

b(m+ 1)

2ν
xm−1. (4.13)

C = C∞ + (Cw − C∞)φ(η),

∂C

∂y
= x

m−1
2 (Cw − C∞)

b(m+ 1)

2ν
φ′(η). (4.14)

Using Eq. (4.11) to Eq. (4.14) in Eq. (4.3), we get dimensionless form:

− b
(
m+ 1

2

)
(Tw − T∞)fθ′xm−1 = α(Tw − T∞)θ′′

b(m+ 1)

2ν

+ τ [DB((Cw − C∞))(Tw − T∞)θ′φ′b(
m+ 1

2ν
)xm−1 +

DT

T∞
(Tw − T∞)2

b

(
m+ 1

2ν

)
xm−1(θ′)2] +

Q0

(ρcp)f

(Tw − T∞)θ

xm−1
+
σB2

0b
2x2mf ′2

ρcp
,
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multiplying whole equation with 2
b(m+1)(Tw−T∞)

and dividing with xm−1, we have

− fθ′ = α

ν
θ′′ +

τDB(Cw − C∞)

ν
θ′φ′ + τ

DT

T∞

(Tw − T∞)θ2

ν
+

Q0

(ρcp)f

2θ

(m+ 1)xm−1

+

(
σ

ρcp

)
B2

0b
2x2mf ′2

(
2

bxm−1(m+ 1)(Tw − T∞)

)
,

θ′′

Pr
+Ntθ

′2 +
2θλ

(m+ 1)
+

2σB2
0

(m+ 1)ρbxm−1
b2x2m

(Tw − T∞)cp
+ fθ′ +Nbφ

′θ′ = 0,

θ′′

Pr
+Ntθ

′2 +Nbφ
′θ′ +

2θλ

(m+ 1)
+MEcf ′2 = 0 + fθ′. (4.15)

∴ M =
2σB2

0

ρ(m+ 1)bxm−1
, ∴ Ec =

b2x2m

Tw − T∞)cp
.

Now we use similar process to convert Eq. (4.4) into dimensionless form:

u =
∂ψ

∂y
= bxmf ′. (4.16)

v = −∂ψ
∂x

=

√
ν(m+ 1)

2
)bx

m−1
2

[
f ′
(
m− 1

m+ 1

)]
η + f. (4.17)

∂C

∂x
= y

√
b(m+ 1)

2ν

(
m− 1

2

)
x

m−3
2 (Cw − C∞)φ′(η). (4.18)

∂C

∂y
= x

m−1
2 (Cw − C∞)

b(m+ 1)

2ν
φ′(η). (4.19)

∂2C

∂y2
= (Cw − C∞)φ′′(η)

(
b(m+ 1)

2ν

)
xm−1. (4.20)

∂2T

∂y2
= (Tw − T∞)θ′′

√
b(m+ 1)

2ν
x

m−1
2

√
b(m+ 1)

2ν
x

m−1
2 . (4.21)

Using all Eqs. (4.16) to (4.21) in Eq. (4.4), we get

− b(m+ 1)

2
xm−1(Cw − C∞)fφ′ =

b(m+ 1)

2
(Cw − C∞)xm−1

[
DB

ν
φ′′(η)

+
DT (Tw − T∞)

γT∞(cw − c∞)
θ′′ − 2R1

b(m+ 1)xm−1
φ(η)

(
T

T∞

)m
exp

(
− E∗

K∗T

)]
,
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Taking common− b(m+1)
2

xm−1(Cw − C∞), we get,

DB

γ
φ′′(η) +

(
Tw − T∞
Cw − C∞

)
DT

T∞

θ′′

γ
− 2

m+ 1

(
R1

bxm−1
φ

)(
T

T∞

)m
exp

(
− E∗

TK∗

)
+ fφ′ = 0,

φ′′ +
Nt

Nb

θ′′ + LePrfφ′ − 2

m+ 1
γ1φLePr

(
T

T∞

)m
exp

(
− E∗

TK∗

)
= 0, (4.22)

let A =
2

m+ 1
γ1φLePr

(
T

T∞

)m
exp

(
− E∗

TK∗

)
.

A =
2

m+ 1
γ1φLePr

(
(Tw − T∞)θ(η) + T∞

T∞

)m
exp

(
− E∗

T∞K∗(Tw − T∞)θ(η) + T∞

)
,

A =
2

m+ 1
γ1φLePr(γ2 + θ(η))mexp

(
− E∗

T∞K∗(γ2θ + 1)

)
. (4.23)

Using Eq. (4.23) into Eq. (4.22), we get

φ′′ +
Nt

Nb

θ′′ + LePrfφ′ − 2

m+ 1
γ1φLePr(1 + γ2θ(η))mexp

(
−E∗

K∗T∞(1 + γ2θ)

)
,

φ′′ +
Nt

Nb

θ′′ + LePrfφ′ − 2

m+ 1
γ1φLePr(1 + γ2θ(η))mexp

(
−E

1 + γ2θ

)
. (4.24)

∴ E =
E∗

T∞K∗
, γ2 =

Tw − T∞
T∞

.

4.4 Numerical Solution

Now we consider third order ODE with associated boundary condition:

f ′′′ = −
ff ′′ −

(
2

m+1

)
(mf ′2 +K1f

′)−Mf ′

[1 + nWe2(f ′′)2] [1 +We2(f ′′)]
n−3
2

. (4.25)

f(0) = 0, f ′(∞)→ 0, f ′(0) = 1. (4.26)
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We solve the above equation with associated boundry conditions using by shooting

method. For this, we convert third order ODE into first order ODEs and used RK4

method to solve IVP assuming the initial missing conditions. We used following

notations:

f = g1,

f ′ = g2,

f ′′ = g3.

IVP takes the form:

g′1 = g2; g1(0) = 0, (4.27)

g′2 = g3; g2(0) = 1, (4.28)

g′3 = −
g1g3 −

(
2

m+1

)
(mg22 +K1g2)−Mg2

[1 + nWe2(f ′′)2] [1 +We2(f ′′)]
n−3
2

; g3(0) = ξ. (4.29)

Missing condition ‘ξ’ is assumed to satisfy following relation:

g2(η∞, ξ) = 0, where η∞ is positive real number.

Now we use Newton’s method

ξ(k+1) = ξ(k) − G(ξ)

G′(ξ)
, where G(ξ) = g2(η∞, ξ). (4.30)

(4.31)

In order to calculate the Eq. (4.27) , Eq. (4.28) and Eq. (4.29) following notations

are used:

∂g1
∂s

= g4,
∂g2
∂s

= g5,
∂g3
∂s

= g6.
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g′4 = g5; g4(0) = 0,

g′5 = g6; g5(0) = 0,

g′6 =

[
1

(1 + nWe2g23)2(1 +We2g23)n−3

][[
− (g4g3 + g1g6) +

(
2

m+ 1

)
(2my2g5

+K1g5) +Mg5

]
(1 + nWe2g23)(1 +We2g23)

n−3
2 −

[
(g1g3 +

2

m+ 1
(mg22 +K1g2)

+Mg2

][
(2mWe2g3g6)(1 +We2g23)

n−3
2 + (

n− 3

2
)(1 + nWe2y23)

n−5
2 (2nWe2y3y6)

]]
;

g6(0) = 1.

The RK4 method is used to solve IVP for some suitable choice ξ. The missing

condition ξ is updated by Newton‘s method and process will be continued untilthe

following criteria is met.

|g2(η∞, ξ)− 0| < ε. (4.32)

where ε = 10−8 is set for numerical calculation. Now for Eq. (4.33) and Eq. (4.34)

θ′′ = [−Nbφ
′θ′ −Ntθ

′2 − fθ′ − (
2

m+ 1
)λθ −MEcf ′2]Pr. (4.33)

φ′′ = −PrLefφ′ − Nt

Nb

θ′′ +
2PrLeγ1φ

m+ 1

(
1 + γ2θ(η)

)m
exp

(
− E

1 + γ2θ

)
. (4.34)

The transformed boundary conditions are given below:

θ′(0) = −Bi+Biθ(0), Nbφ
′(0) +Ntθ

′(0) = 0, θ(∞)→ 0, φ(∞)→ 0. (4.35)

We used following notations:

θ = Z1,

θ′ = Z2,

φ = Z3,

φ′ = Z4.
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Rewritting equations:

Z ′1 = Z2; ‘Z1(0) = p,

(4.36)

Z ′2 = Pr[−g1Z2 −NbZ4Z2 −NtZ
2
2 − (

2

m+ 1
)λZ1 −MEcg22]; Z2(0) = −Bi(1− p),

Z ′3 = Z4; Z3(0) = q,

Z ′4 = −PrLeg1Z4 −
Nt

Nb

Pr[−g1Z2 −NbZ4Z2 −NtZ
2
2 −

(
2

m+ 1

)
λZ1 −MEcg22]

+
2PrLeγ1Z3

m+ 1
(1 + γ2Z1)

mexp

(
− E

1 + γ2Z1

)
; (4.37)

Z4(0) =
NtBi(1− p)

Nb

.

Missing conditions ‘p’ and ‘q’ are assumed to satisfy the following relation:

Z1(η∞, p, q) = 0 (4.38)

Z3(η∞, p, q) = 0. (4.39)

We have to solve the above equations by applying the Newton‘s method,

 p(k+1)

q(k+1)

 =

 p(k)

q(k)

−
 ∂Z1

∂p
∂Z1

∂q

∂Z3

∂p
∂Z3

∂q

−1
(p=p(k),q=q(k))

 Z1

Z3

 . (4.40)

We use following notations:

∂Z1

∂p
= Z5,

∂Z2

∂s
= Z6,

∂Z3

∂p
= Z7,

∂Z4

∂p
= Z8,

∂Z1

∂q
= Z9,

∂Z2

∂t
= Z10,

∂Z3

∂q
= Z11,

∂Z4

∂q
= Z12.
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. Using above notation in Eq. (4.40), we have

 p(k+1)

q(k+1)

 =

 p(k)

q(k)

−
 Z5 Z9

Z7 Z11

−1
(p=p(k),q=q(k))

 Z1

Z3

 (4.41)

Differiating Eq. (4.36) to (4.37) w.r.t ‘p’ and ‘q’, we have

Z ′5 = Z6; Z5(0) = 1,

Z ′6 = Pr

[
g1Z6 −Nb(Z6Z4 + Z8Z2)− 2NtZ2Z6 −

(
2

m+ 1

)
λZ5 −MEcg22

]
;

Z6(0) = Bi,

Z ′7 = Z8; Z7(0) = 0,

Z ′8 = −PrLeg1Z8 −
Nt

Nb

Pr

[
− g1Z6 −Nb(Z6Z4 + Z8Z2)− 2NtZ2Z6

−
(

2

m+ 1

)
λZ5 −MEcg22

]
+

2

m+ 1
PrLeγ1

[
Z7(1 + γ2Z1)

m

exp

(
−E

1 + γ2Z1

)
+mZ3(1 + γ2Z1)

m−1(γ2Z5)exp

(
−E

1 + γ2Z1

)
+ Z3(1 + γ2Z1)

m

exp

(
−E

1 + γ2Z1

)(
Eγ2Z5

1 + (γ2Z1)2

)]
; Z8(0) = −NtBi

Nb

,

Z ′9 = Z10; Z9(0) = 0,

Z ′10 = Pr

[
−g1Z10 −Nb(Z4Z10 + Z2Z12)− 2NtZ2N10 −

(
2

m+ 1

)
λZ9 −MEcg22

]
;

Z10(0) = 0,

Z ′11 = Z12; Z11(0) = 1,

Z12′ = −PrLeg1Z12 −
NtPr

Nb

[−g1Z10 −Nb(Z4Z10 + Z2Z12)− 2NtZ2Z10

−
(

2

m+ 1

)
λZ9 −MEcg22] +

(
2

m+ 1

)
PrLeγ1

[
Z11(1 + γ2Z1)

m
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exp

(
−E

1 + γ2Z1

)
+mZ3(1 + γ2Z1)

m−1(γ2Z9)exp

(
−E

1 + γ2Z1

)
+ Z3(1 + γ2Z1)

m

exp

(
−E

1 + γ2Z1

)2(
Eγ2Z9

1 + (γ2Z1)2

)]
; Z12(0) = 0.

We have to solve above equation by applying the shooting method. The RK4

method is use to solve the IVP and initial values are choosen arbitrarily. During

the execution of iterations these initial guesses shall be updated by the Newton’s

method and the process will be repeated untill the following stoping criteria is met,

max(|Z1(η∞, p, q)|, |Z3(η∞, p, q)|) < ε,

where ε = 10−8 is set for numerical calculation.

4.5 Results and Discussions

In the current section, computations are achieved for definite range of physical

parameter like K1, λ, Bi and γ1. The influence of these parameters on local

Sherwood number, local Nusselt number, temperature, velocity and concentration

distibutions is observed numerically which are shown through tables and graphs.

To validate the correctness of these outcomes, the assessment of the result of

present study with existing reported works in litrature have been accomplished

and tabularize in Tables ?? and 4.2. These assessment indicate the admirable

agreement. Figure 4.1 represents the influence of porosity parameter K1 at veloc-

ity distribution for dilatant and pseudoplastic nanofluid. For constant values of

the parameters (Pr = 2, Le = 1, We = 3, Bi = 1, m = 2, Nt = 0.1, Nb = 0.5,

γ1 = 0.1 and λ = 0.1), it is observed that an excess in the value of porosity pa-

rameter K1, rebates the velocity distribution rate.

Figure 4.2-4.5 demonstrate the impact of porosity parameter K1 and Biot number

Bi on temperature distribution θ(η). It is noted that temperature enhances with

rising values of porosity parameter K1, on contrary of heat source, heat sink and

Biot number enhance the temperature distribution. It is also demonstrated that
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thermal boundary layer thickness enhance by increasing the value of Biot number,

heat source parameter and heat sink parameter. It is observed that the existence

of pseudoplastic nanofluid, the thickness of thermal boundary layer is higher. In-

crease in Biot number, heat transfer coefficient increased and rise in temperature.

The Biot number is simply the ratio between the heat transfer by convection in

the body to the heat transfer by conduction at the body surface physically. This is

tangent magnatohydrodynamic nanofluid because convective heat exchange along

the surface increase the boundary momentum layer. Figure 4.6-4.10 sketched for

the concentration distribution with varying the value of porosity parameter K1,

Biot number Bi, chemical reaction parameter γ and heat source/sink λ in both

the situations n = 0.5 and n = 1.5 while some parameter are static. It is observed

from Figures 4.6-4.10 show that the concentration boundary layer thickness rebates

with rising values of γ1 respectively, while the thickness of concentration boundary

layer enhances by elevation of Biot number and heat source. The impacts of chem-

ical reaction parameter for concentration profile is observed in Figure 4.10 which

shows that the concentration profile reduces by increasing chemical reaction pa-

rameter and it also decrease in concentration thickness. It is because the chemical

reaction in this system, results in chemical dissipation and consequently decrease

in a concentration profile. The most important effect is that the chemical reaction

appears to reduce the overshoot in concentration profile and their crossponding

boundary layer. It is notified that concentration boundary layer in case of shear

thinning nanofluid is higher than in the case of shear thickening nanofluid. Fig-

ure 4.11 (a− b) represents the Nusselt number deviation with porosity parameter

K1 for distinct values of chemical reaction parameter γ1 for both values of n while

other parameters are static. It is concluded that by increasing the value of K1 and

γ1, enhance local Nusselt number magnitude. Figure 4.12 (a− b) and 4.13 (a− b)

show local Nusselt number diversity with K1 for several values for λ both value of

n = 0.5 and n = 1.5. It is clarify that the local Nusselt number enhances with λ.

Figure 4.14 (a− b) display the Sherwood number varies with K1 for different val-

ues of γ1. It is assumed that both K1 and γ1 are raised induce to decrease in the

local Sherwood number, that boosts the rate of mass transfer. Figure 4.15 (a− b)
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and 4.16 (a − b) represent the Sherwood number difference with K1 for several

values of λ for both value of n. It is clear that enhance in λ cause local Sher-

wood numbers to decrease. Figure 4.23 demonstrates the relationship between M

and dimensionless velocity distribution. We see that the fluid’s velocity profile is

continuously depressed by boosting the Magnetic field value. Increasing the value

of M usually creates the Lorentz force and a collision force, due to which the

fluid temperature increases and the velocity reduces in the boundary layer. We

see the influence of M on Temperature distribution in Figure 4.19. By enhanc-

ing M induces temperature profile increases. Physically, larger the M produces

an opposing force normally known as Lorentz force which actually increases the

thickness of nanofluid’s boundry layer and its temperature profile. Figure 4.22

investigates the effect of M on dimensionless concentration distribution. From the

curve it is obvious that the increasing value of M results in increased concentration

distribution. Physically, the fluid concentration and crossponding thickness of the

boundary are increased by M .

Figure 4.20 shows the relationship between Arrhenius activation energy and the

concentration profile. The concentration profile is high through the increasing

value of Arrhenius activation energy parameter E. Accordingly, there is sign to

promote the concentration of modified Arrhenius structure. Therefore the overall

chemical reaction is increased. The Ec results for the velocity and temperature

profiles were characterized by Figures 4.18 and 4.21 . The Ec shows the relation

between the fluid particle kinetic energy and the enthalphy of the boundary layer.

The fluid particle kinetic energy increases as Ec assume a high value. It is noted

that by increasing value of Ec the temperature distribution enhanced. Therefore

the velocity and temperature of the fluids climb slightly and the related momen-

tum and thermal boundary layer thickness increased. Physically, the dissipation

increases with increasing Ec values due to this increases in the dissipation of inter-

nal fluid energy. Figure 4.21 sketched for analysis of Ec effect on the concentration

profile. The concentration profile is clearly increasing due to increase in Ec. The

increasing value of Ec is due to become a cause of the increase in the fluid thermal

energy.
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Table 4.1: Calculated values for −θ(0) for different value of Pr,Nt, Le when
We = 3, λ = γ = K1 = 0, M = 0.3, Ec = 0.50 and E = 0.20

Pr N t Le m Present

n=0.5 n=1.5
1 0.1 1 2 0.0781 0.07827
3 0.08095 0.08136
5 0.08098 0.08138
2 0.3 0.08021 0.08061

0.5 0.08003 0.08042
0.7 0.07983 0.08022
0.1 0.5 0.08043 0.08083

1.5 0.08038 0.08077
2.5 0.08035 0.08075
1 1 0.07932 0.07916

2 0.08117 0.08116
0.5 0.07576 0.07564

Table 4.2: Calculated values for Skin friction coefficient, mass transfer rate and
heat transfer rate for various value of various parameters given below when

M = 0.3, Ec = 0.5, E = 0.2

Bi Pr n γ1 λ K1 -f ′′(0) -θ′(0) -φ′(0)

0.1 0.01 0.5 0.1 -0.1 0.5 0.014599 0.062971 -0.012594
0.2 0.01 0.5 0.1 -0.1 0.5 0.014599 0.092117 -0.018423
0.2 0.01 0.5 0.2 -0.1 0.5 0.014599 0.090950 -0.018190
0.2 0.1 0.5 0.2 -0.1 0.5 0.014599 0.092090 -0.018418
0.2 10 0.5 0.2 -0.1 0.5 0.014599 0.131466 -0.026293
0.2 10 0.5 0.5 -0.1 0.5 0.014599 -0.065207 0.013041
0.2 50 0.5 0.5 -0.1 0.5 0.014599 0.070705 -0.014141
0.2 50 0.5 0.5 -0.1 0.9 0.014599 0.140000 -0.028000
0.3 1 1.5 0.5 -0.1 0.5 0.014599 0.837065 -0.167413
0.3 1 1.5 0.5 -0.1 0.9 0.014599 0.005336 -0.001067
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Figure 4.1: Effect of velocity via porosity parameter.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n=0.5
n=1.5

K1=0.5,1,1.5

Figure 4.2: Effect of temperature via heat generation.
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Figure 4.3: Effect of temperature via heat source.
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Figure 4.4: Effect of temperature via sink parameter.
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Figure 4.5: Effect of temperature via Biot number.
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Figure 4.6: Effect of nanoparticles concentration via heat generation.
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Figure 4.7: Effect of nanoparticles concentration via heat source.
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Figure 4.8: Effect of nanoparticles concentration via sink parameter.
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Figure 4.9: Effect of nanoparticles concentration via biot number.
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Figure 4.10: Effect of nanoparticles concentration via chemical reaction param-
eter.
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Figure 4.11: Effect of sink parameter on Nusslet number.
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Figure 4.12: Effect of sink parameter on Nusslet number.
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Figure 4.13: Effect of heat source on Sherwood number.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

=0.1
=0.2
=0.3

Figure 4.14: Effect of heat source on Sherwood number.
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Figure 4.15: Effect of sink parameter on Sherwood number.
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Figure 4.16: Influence of sink parameter on Sherwood number.



Analyzing the Activation Energy and Ohmic Heating 65

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

n=0.5
n=1.5

E=0.20,2.20,4.20

Figure 4.17: Effect of E on θ(η).
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Figure 4.18: Effect of Ec on θ(η).
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Figure 4.19: Effect of M on θ(η).
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Figure 4.20: Effect of E on φ(η).
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Figure 4.21: Effect of Ec on φ(η).
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Figure 4.22: Effect of M on φ(η).
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Figure 4.23: Effect of M on velocity.



Chapter 5

Conclusion

This dissertation exhibits a computational investigation for the mass and heat

transfer in MHD Carreau nanofluid over porous medium with heat sink, heat

source and chemical reaction. The conclusions of this dissertation are as follows:

• The velocity profile increases by increasing the values of power law index.

• A decrement is observed in the temperature and concentration because of

rising values of power law index, Biot number, heat source, and heat sink.

• Increasing the chemical reaction parameter the rate of transfer of heat in-

creases.

• The concentration profile falls for the larger estimation of chemical reaction.

• The rate of transfer of heat increases as the heat sink, heat source, power

law index enhance.

• The mass transfer rate shrinks as enhances in chemical reaction, power law,

heat source parameter and heat sink parameter.
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